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Abstract 
Many network models are too complex to readily identify 
which structural aspects of a network are most influential on 
robustness. To analyze the dynamics and robustness of a 
network, many of the protocol details can be reduced to a 
graph theory representation of nodes, links and link weights. 
Our method uses the spectral analysis of the Laplacian matrix 
to decouple the interactions between nodes to analyze the 
robustness of a wireless mobile ad hoc network (MANET) with 
a time-varying wireless channel. This spectral analysis and 
the resulting algebraic connectivity can be used to determine 
how robust a network is, where the weak links are, and how to 
best increase overall performance of a network. Using a 
simulation of wireless devices in a MANET with a time-
varying channel, we show that robustness is a function of 
time, that nodes become coupled and decoupled as the 
structure of the network changes and that any robustness 
analysis is more complete when more than a single eigenvalue 
is evaluated. 
 
1. Introduction 
 

Mobile ad hoc networks (MANETs) are complex systems 
that can be foreseen supporting multiple applications to 
include vehicle-to-vehicle communications (V2V), which the 
United States’ Department of Transportation is considering 
mandating to improve highway safety [1]. V2V 
communications and more generally, MANETs can be 
implemented using any one of a large number of protocols at 
all layers of the open system interconnection (OSI) stack. To 
add to the complexity of the analysis of these networks, there 
are typically large numbers of nodes that can enter and leave 
the network. For instance, one should consider the number of 
cars that would need to communicate with a wireless 
infrastructure at any major intersection in New York City. A 
MANET is in constant flux due to these changes. 
Additionally, the links between nodes are wireless, which 
means the quality of each link changes with time which 
impacts data throughput and transmission errors.  

All of these factors lead to difficulty when analyzing the 
robustness of a mobile network. There are many modeling 
resources available to researchers, such as Network Simulator 
(NS-3) [2]. Many of these resources allow the user to select 
from a myriad of options at each layer of the OSI stack. The 
overall topology, structure and robustness of the network can 
be lost in the details of protocols. Many research cases do not 
require this level of detail. A simpler model of nodes, links 
and link weights can be used to analyze the structure of the 

network to determine a node and link’s importance to the 
overall robustness of a network. Graph theory has been used 
to provide analytic foundations for this robustness analysis.  

 
1.1 Graph Theory Modeling for Robustness 
 

Graph theory is a tool to model networks of interconnected 
devices with the goal of providing the analytical groundwork 
for developing algorithms that maximize performance. This 
goal is achieved through matrix representations of the graphs 
and developing graph metrics to better understand the state of 
the modeled network. Spectral graph theory uses the 
eigendecomposition of these matrices to gain a better 
understanding of the robustness of the network. The primary 
two matrices used in spectral graph theory are the adjacency 
matrix and the Laplacian matrix [3]. The adjacency matrix is a 
representation of the network focused on the links between 
nodes. The Laplacian matrix goes a step further and 
incorporates the degree matrix, which is a matrix solely 
focused on nodal connectivity. In our application, the 
Laplacian matrix is used because it combines both a nodal 
matrix and a link matrix. This allows us to define eigenvectors 
and eigenvalues in terms of nodes and couplings between 
nodes.  

The main application of spectral graph theory has been to 
maximize the algebraic connectivity, which is defined as the 
smallest, non-zero eigenvalue of the Laplacian matrix [3]. It 
has been shown that algebraic connectivity is well correlated 
with robustness and performance of various networks to 
include wireless mobile ad hoc networks [4] [5] [6]. Graphs 
with weighted links have been used to develop formations of 
mobile nodes that maximize algebraic connectivity [7]. 
Methods have been developed that calculate algebraic 
connectivity in a distributed manner as an input to the control 
law to maintain formations that maximize algebraic 
connectivity [8] [9]. All of these examples only use the 
algebraic connectivity and the associated eigenvector. Much 
more information is contained in the remaining eigenvalues 
and eigenvectors that has not been exploited in modeling and 
analysis of MANETs. 

We propose a novel method that first simplifies the 
network to a set of links, nodes, and weights. Second, we use 
the entire eigenspace of the Laplacian matrix to decouple the 
interactions between nodes and analyze the robustness of a 
wireless MANETs with a time-varying wireless channel. Once 
analyzed, we are able to use spectral graph theory techniques 
to propose methods to maximize the robustness of the 
network. 
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This paper is organized as follows. In section 2, we describe 
how the MANET is modeled in a graph theory matrix, propose 
a method to weight each link and then describe the 
eigendecomposition of the weighted graph. Section 3 describes 
the dual basis, eigencentrality basis, and nodal basis. Section 4 
shows the simulations of the modeled network and analysis of 
the results. Section 5 provides our conclusions and future work. 
2. Eigendecomposition of a Wireless Ad Hoc 
Network 
 

The Laplacian matrix is a positive, semi-definite matrix 
which means it will always have at least one zero eigenvalue 
and will always create a dual basis [10]. A dual basis is 
defined as a matrix in which all rows are orthogonal to all 
columns. To exploit this double orthogonality of the Laplacian 
matrix, Q , the adjacency matrix, A , must be defined, which 
requires a definition of the link weights, ijw . Our approach 
uses the empirical path loss model with shadowing to weight 
each link in the graph. The objective is to build the Laplacian 
matrix based on a model that can be used in multiple 
applications and is firmly rooted in the dynamics of a wireless 
channel. The dual basis is only as meaningful as the graph 
theory matrix on which it is based. 

 
2.1 Graph Representation of Wireless Ad Hoc 
Network 
 

Figure 1 shows an example mesh network with six nodes 
and one mobile node. One of the nodes, node seven, is too far 
away to communicate reliably with the other nodes in the 
network. This simple graph can be described using various 
graph theory matrices. The adjacency matrix describes the 
links between nodes, and the degree matrix, D , is a diagonal 
matrix that describes how many connections each node has 
[3].  

 
Figure 1. A six node mesh network with one 

mobile node 
An unweighted adjacency matrix is a binary matrix of ones 

and zeroes. A weighted graph is able to describe more than 
just the existence of a link; it can take into account 
information about the link quality at the physical layer and 
utilization of the available capacity at the network layer. This 

multi-layered approach allows a single network to be modeled 
across multiple functional layers to achieve a better 
understanding of the performance of each layer in context of 
the whole network.  

 
2.2 Link Weights Based on Wireless Path Loss Model 

Because of the time-varying nature of the wireless links 
between ad hoc nodes, the effects of the physical channel and 
a node’s mobility, the MANET cannot be modeled using an 
unweighted graph. The model must take into account the time 
varying nature of the channel. We propose using energy per 
bit to noise power spectral density ratio, 0bE N , which is a 
widely used metric for the bit error rate between nodes. By 
using 0bE N  as a link weight, the eigendecomposition of the 
network model is time-varying as well.  

Using the empirical path loss model with shadowing, the 
weight of each link is defined as [11] 
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If bandwidth, B , data rate, R , loss at reference distance, oL , 
and the reference distance, od , are held constant, the link 
weights are a function of transmit power, TxP , the noise 
power, the distance between the nodes, d , and the random 
variable, X . The noise power, NP , is a combination of both 
the additive white Gaussian noise, AWGNP , and the interference 
from other in-band transmitters, IntP . The probability density 
function of the Gaussian random variable X  in decibels is  
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The variation in the received signal power, sP , is accounted 
for by the random variable. By varying the standard deviation, 
σ , we were able to model variations of received signal 
strength from the mean [11].  
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Figure 2. Simulated results of eqn. 2 
 
Using (1) to define the link weight between node i  and 

node j , the weighted Laplacian matrix, Q , is defined as 

 
1

 if 

( , )  if 

0 otherwise

ij ij
n

ij
i

w e L

Q i j w i j
=

− ∈�
		= =

	
	�

�   (3) 

To construct the Laplacian matrix, there exists a link, ije , 
in the set of all links, L , if and only if the 0bE N  of the link 
is sufficient to meet the bit error rate (BER) threshold (τ ) 
required for the modulation scheme in use. If the link does not 
support the required BER, the link is set to zero. A zero 
indicates that node  and node  i j  are unable to reliably 
communicate. 

 
2.3 Eigendecomposition of Weighted Graph 
 

The Laplacian matrix is positive semi-definite; therefore, 
all eigenvalues are real, and there will always be at least one 
zero eigenvalue [10]. The eigenvalues are typically ordered 
from smallest to largest by  

 1 2 10 n nλ λ λ λ−= ≤ ≤ ≤ ≤�   (4) 
Additional zero eigenvalues are interpreted as additional 
disconnected nodes. For each connected group within the 
graph model, there will be a zero eigenvalue [3].  

Maximizing the smallest non-zero eigenvalue, only 
minimizes the difference between the largest and smallest 
eigenvalues. In an unweighted graph, the largest eigenvalue is 
bound by [3] 

 n nλ ≤   (5) 
Using only the smallest as a metric only provides insight into 
the least connected area of the network. It provides no 
information about any other portion of the network. All the 
eigenvalues must be considered.  
 
3. Dual Basis of a Wireless Ad Hoc Network 
 

Spectral graph theory uses the eigendecomposition of the 
Laplacian matrix to describe characteristics of the network. 
The characteristics that are described are dependent upon how 
the links are modeled. In this case, we are modeling the 
wireless channel and the mobility of the nodes. The 
characteristics that are described by the eigenspace are the 
robustness of the network and the reachability within the 
network. These characteristics are fully described by the dual 
basis, the reachability space and null space. 

 
3.1 Double Orthogonality  
 

The eigenvector associated with each eigenvalue creates 
an orthogonal basis for the network model. In the case of a 

symmetric matrix, a dual basis is always created [10]. A dual 
basis is defined as  

 TV V I=   (6) 
where V  is an orthonormal matrix of eigenvectors, and I  is 
the identity matrix.  

The dual basis in this case is a result of solving for the 
eigenvector, v , in the equation  

 ( ) 0Q I vλ− =   (7) 
By solving eqn. (7) for all n  eigenvalues and eigenvectors, 
the matrices and D V  can be defined and used to recreate Q . 
In most applications, only one eigenvector matrix is required, 
the right eigenvector. Transformations using the right 
eigenvector can be demonstrated by rearranging  

 TQ VDV=   (8) 

 ( )TQV VD V V VD= =   (9) 

 1QV z=   (10) 
The right eigenvector’s dual is the left eigenvector which can 
be demonstrated by rearranging eqn. (8) to result in  

 ( )T T T TV Q V V DV DV= =   (11) 

 2
TV Q z=   (12) 

Together the left and right eigenvectors create a dual basis 
for the network. The dual basis provides two orthogonal bases 
in which the network can be defined. V  transforms Q  into 
the eigencentrality space [12], which is the space where each 
column vector of V  is associated with one eigenvalue. TV  
transforms Q  into the nodal space, which is the space where 
each column vector of TV  is associated with a specific node 
in the network. These two transformations allow an analysis of 
the network from an eigencentrality perspective or a nodal 
perspective. Both of which are useful depending on the 
specific application of the model. 

The eigencentrality basis is the basis that defines how 
influential a specific node is at a given eigenvalue. The 
eigencentrality metric is a measure of how important a node is 
to the network and what the impact is of its removal. The 
eigencentrality metric is defined as  

 ( )2k
j k j

E v=   (13) 

or as the square of the thk  eigenvector’s thj   value, [12].  
 
3.2 Eigencentrality Basis  
 

Figure 3 shows a two-dimensional representation of the 
eigencentrality basis; each node is represented as a light blue 
circle, and each link is represented as a blue line. The orange 
circle in the middle of the graph represents the disconnected 
node. Each eigencentrality vector will be an n-dimensional 
vector. In this example, the eigencentrality vectors are 7-
dimensional vectors; one value for each node. Plotting the first 
two eigencentrality vectors typically produce visually pleasing 
representation of the network because they place the least 
connected nodes at the edge and the most connected nodes at 
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the center [13]. Networks are typically drawn this way; the 
core of the network is in the center of the diagram, and the 
access network is at the edge.  

The network could be as easily plotted using the two 
eigenvectors associated with the two largest eigenvalues. This 
representation would place the most connected nodes at the 
edge of the graph and the least connected in the center as 
shown in Figure 4. This is not an intuitive way of visualizing 
the network, but when analyzing network structure it is 
important to understand the two extremes.  

 

 
Figure 3. Plot of the first two components of the 

eigencentrality basis 

 
3.3 Nodal Basis  
 

The nodal basis is the basis that defines how influential a 
specific node is across a range of eigenvalues. This space 
defines the magnitude spectrum of the node across the full 
range of eigenvalues or eigenspectrum [14]. From this space, a 
node’s importance to the rest of the graph can be determined. 

 
Figure 4. Plot of the sixth and seventh components 

of the eigencentrality basis 
The nodal basis of node six only has five values because 

there are only five non-zero eigenvalues: [0.588, 0.130, 0.110, 
0.026, 0.009]. The magnitude response across the 

eigenspectrum demonstrates a node’s importance at each 
eigenvalue. Node six has its greatest magnitude at eigenvalue 
three, the first non-zero eigenvalue. This peak corresponds 
with the fact that it is not well connected and is the most 
important node when determining the algebraic connectivity 
of this network. Each node in Figure 1 has similar responses 
with a peak at a distinct eigenvalue. Using this information, 
the nodes can be ranked from least connected to most 
connected or least important to most important to the 
robustness of the network.  

 
3.4 Null and Reachability Space  
 

There will always be one or more zero eigenvalues of the 
Laplacian. The zero eigenvalues define the null space of the 
Laplacian. The null space is mathematically and physically 
interpreted as a part of the solution space or network that is 
unreachable. The reachability space is defined as the space in 
which there is guaranteed to be a route from all nodes to all 
other nodes. The reachability space is fully defined by the dual 
basis of and TV V  after the null space has been removed. 

The number of non-zero eigenvalues and the size of the 
reachability space is equal to the ( )rank Q . The size of the 

null space is equal to the ( )rank 0n Q− > . The size of the null 
space determines the length of the vectors in the nodal space; 
the nodal space eigenvectors will have dimensionality equal to 
the ( )rank Q . The eigencentrality basis vectors will always 
have a length equal to n  [12]. 

As the bit error rate increases to a threshold, nodes will 
become disconnected from the larger ad hoc network and will 
enter the null space. As a function of time, the null space will 
grow and shrink as nodes leave and enter the network. Nodes 
within the null space may be able to reach each other, but they 
are not useful because they are not able to connect to the 
larger ad hoc network that is performing the required task. 

 
4. Modeling and Analysis Simulations 
 

To demonstrate the usefulness of the dual basis, 
reachability space and null space in practice, we simulated a 
mobile node moving through a mesh network. As the mobile 
node moves through the network, different nodes in the 
network are reachable within one hop. The 0bE N  between 
nodes determines its eigencentrality within the network.  

 
4.1 Simulation Description 
 

Figure 1 shows the path node seven will take through the 
network. Two sets of simulations were run; the first set did not 
include shadowing and the second did. The reason for this 
choice was to first show the mean behavior of the network in 
the dual basis, and then show an example of decoupled nodal 
behavior when shadowing is added to the simulation. The 
threshold for a connection was selected to be 6.5 dB because 
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binary phase shift keying (BPSK) requires a 0bE N  greater 
than that value to ensure a probability of bit error of 10-3[11]. 
The transmit power was held fixed at 1 W. The AWGN and 
interference were set constant at -75 dB. The node moves in a 
straight line at 1.3 m/s (2.9 mph). These selections were 
arbitrary and could be changed in order to better model a 
specific mobile device and wireless environment. 
 
4.2 Simulation Results without Shadowing 
 

The eigenvalues of the network are shown in Figure 5. The 
left hand axis shows the magnitude of the eigenvalues, and the 
right hand axis shows the number of nodes that node seven is 
able to reach in one hop. The discontinuities in the figure are 
due to the use of a threshold, τ . As soon as 0bE N  increases 
above the threshold, a new link is added to the set of all links 
in the graph. This discrete change in the integer number of 
links is reflected in a discrete change in the eigenvalues. The 
continuous behavior of the eigenvalues is due to the 
continuous nature of 0bE N  as a function of distance.  

Between 90 and 600 seconds, the algebraic connectivity of 
the network does not change significantly until node seven is 
only connected to node six and is exiting the network. The 
result of this topology is the decreased algebraic connectivity 
after 600 seconds. In this simulation, the algebraic 
connectivity provides little information about the overall 
dynamics of the network. The remaining eigenvalues provide 
the majority of the information, specifically, 5 6 7, ,  and λ λ λ . 

 
Figure 5. Eigenvalues without shadowing and the 

degree of node seven (dashed) 
As noted above, the discontinuities are due to the use of 

the threshold to determine inclusion into the set of all links. 
The difference in the sum of the magnitudes of any set of 
eigenvalues at time t t− Δ , just before a discontinuity, and 
time t  is  

 
1 1

2 ( ) ( )
n n

k k
k k

t t tτ λ λ
= =

= − − Δ� �   (14) 

Eqn. 14 is derived from the fact that [3] 

 
1 1
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Q k kλ
= =

=� �   (15) 

Since the Laplacian matrix was not normalized, when a new 
link is added to or removed from the set of all links there is a 
discrete change of 13 dB in the sum of the eigenvalues. The 
reason the difference is 2τ  is because each link is counted 
twice; it is counted once from node i  to node j  and counted 
again from node j  to node i . The proportion of the 2τ  that 
shows up in each eigenvalue is determined by where the node 
connects to the network, which is a benefit of our approach. 
The eigendecomposition determines how the additional link 
weights should be distributed among each basis. 

Figure 6 shows the eigencentrality basis related to the 
largest eigenvalue. This basis shows the relative centrality of 
the most central nodes. In this simulation, there are three 
nodes that become the most central node at different times. 
When node seven connects to the network, node two (green, 
dashed line) is the most central node. Then as node seven 
approaches the center of the network, it takes over as the most 
central. Then as node seven leaves the network, node three, 
and briefly node six, become the most central nodes. At the 
crossover points, two nodes share the same centrality metric, 
which implies that these two nodes will have equal impact if 
removed from the network. Since they are associated with the 
largest eigenvalue, these most central nodes will have the 
largest negative impact on performance if removed [12]. 

 
Figure 6. Eigencentrality metrics for the maximum 

eigenvalue  
Figure 7 shows the first crossover from Figure 6 in the 

two-dimensional eigencentrality space. The crossover at 290 
seconds is clearly depicted in Figure 7 since nodes two and 
seven are equal distance from the center of the graph and have 
opposite signs. Node four has a small value along the seventh 
vector axis, but has a large value along the sixth vector axis. 
This representation provides a plot of the graph that is visually 
appealing and clearly distinguishes the most critical nodes in 
the network. As compared to Figure 4, Figure 7 is similar, but 
now one can see that node seven has taken the place of node 
three as more critical to the performance of the network. 
Figures 6 and 7 are presenting similar information, but 
because the eigencentrality basis has more dimensions than 
can be visualized, it is difficult to present a single figure that 
captures all of the relevant information. Figure 6 shows the 
changes over time, but for only one eigenvector. Figure 7 
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shows an instance in time, but is able to show multiple 
vectors. Adding animation to Figure 7 provides a way to 
visualize the dynamics of the network in two or three 
dimension as a function of time. 

The detail shown in Figure 8 shows the crossover points of 
the various nodes when node seven is only connected to node 
six and is leaving the network. Because node six is strongly 
connected to node seven and node three, it is the most central 
after node seven disconnects from node three. This changes as 
node seven leaves the network. The nodes one would expect 
to be most critical, nodes three and four, are increasing in 
value as node seven departs the network. In the context of 
decoupling, the crossover points are times when two nodes 
share equal influence over an eigenvalue. This situation does 
not allow the criticality to the structure of the two nodes to be 
decoupled.  

 

 
Figure 7. Plot of the sixth and seventh components 

of the eigencentrality basis at 290 seconds 
Figure 9 shows the eigencentrality basis associated with the 
smallest eigenvalue. This basis describes the least central 
nodes. The nodes with only one link are the most influential in 
this basis throughout the simulation. Using only 2λ  in this 
simulation would provide little information about the overall 
health and robustness of the network. The core of the network 
is becoming more robust with increased 0bE N  and increased 
path diversity. While the nodes with only one link can be 
easily separated from the network. Therefore, the overall 
network is becoming more robust, but the areas of the network 
that affect algebraic connectivity have not changed.  
 
4.3 Simulation Results with Shadowing 
 

The addition of shadowing adds a new dimension to the 
analysis via dual basis. Because of the way we modeled the 
presence of a link in the set, a link is added to the set and 
removed from the set multiple times if node seven is near the 
mean distance for connectivity. This is due to the changes in 

0bE N  as a function of time. The key insight to notice in 
Figure 10 is that node seven is rapidly adding and removing a 
link to node one between 300 and 400 seconds. The result of 
this additional 13 dB is almost entirely accounted for in 4λ  
and 7λ .  

 

 
Figure 8. Detail of the eigencentrality metric when 

node seven is only connected to node six 

 
Figure 9. Eigencentrality metrics for the minimum 
eigenvalue as node seven traverses the network 
Figure 11 shows the reason for this distribution of the 13 

dB. The nodal basis of node one shows that it has a large 
eigencentrality metric in 4λ , which implies that it has a large 
influence over 4λ [12]. The spectrum of node seven is similar 
to that shown in Figure 11, but it reveals that node seven has a 
large influence over 7λ . The addition of this link has been 
decoupled from the adjacent nodes, and its impact has been 
limited to two eigenvalues.  

The analysis of the network with shadowing shows the 
benefit of our approach. The eigendecomposition of the 
network presents a method to simplify a complex network to 
understand the decoupled interactions between nodes in the 
graph. Figures 10 and 11 show that the interaction between 
nodes one and seven is almost completely contained in 
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eigenvalues four and seven. There is a clear decoupling of this 
interaction from the interaction with the other nodes. This 
decoupling is not unique to this simulation because the dual 
representation creates two orthonormal bases that decouple 
nodes in a network to the extent possible [15].  

 
Figure 10. Eigenvalues with shadowing and the 

degree of node seven (dashed) 
Repeated eigenvalues and crossover points are two 

examples when the interactions cannot be decoupled. In these 
two cases, not being able to decouple the two is an important 
characteristic of the network. Repeated eigenvalues indicate 
that the network has some duplicate connections that may or 
may not be desired. The crossover points indicate that two or 
more nodes have equal influence over a particular eigenvalue 
or they have equal impact when removed from the network.  

 
Figure 11. Spectrum of node one as node seven 

nears the mean distance for connectivity 

 
5. Conclusions 
 

In this paper, we have presented the analytical basis for a 
novel way to model and analyze the performance of wireless 
mobile ad hoc networks. We have also presented an analysis 
of a simulation to show the efficacy of our approach. Our 

approach’s use of the dual basis representation allows 
researchers to better understand the dynamics of their 
networks via a decoupling of the behavior of independent 
nodes. The eigencentrality basis and nodal basis provide 
information about which nodes are most influential. We have 
presented a small number of cases where one can and cannot 
decouple the behavior of various nodes. These few cases show 
that our analysis effectively locates coupled nodes, the most 
central node in the network and weakly connected nodes. All 
of these are required when using the analysis to improve the 
performance and robustness of a network. Once these have 
been identified, known techniques can be used to maximize 
algebraic connectivity, path diversity, and minimize average 
path length [6][7][8]. 

We have modeled the link weights using one particular 
method. More detailed models of the wireless channel and the 
mobility of nodes could be used. More detailed models 
provide a better foundation to understand the performance of 
the network. The models that are chosen by researchers should 
be focused on their needs and requirements. 

In future work, we will explore the meaning of repeated 
eigenvalues in the context of redundant connectivity in a 
network and how to interpret the meaning of the 
eigencentrality metric for these repeated eigenvalues. The link 
weight can also be used to model the capacity of a link and the 
amount of capacity that is used on that link. Greater link 
weights would be given to links that have more capacity and 
less utilization. Modeling a network in this fashion provides 
information about which areas of the network are most 
utilized and underutilized.  
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